
PLA S NTENAIO:A MLOA PR CTIFII NE LLGE EC I 1
PAN 1 RSY N CHE I LOGICALPERSPECIVE,(U

MD A R A 3 SR I I T RN A SI N C E N L O P R
A A T F C A

r N L G E --E C F 2 /6

EhhhE~hE2

, .~ll *36_1 IIIII o

111111.25 __

MiCROCOPY RESOLUIION ISI CHARI

LICRO W0PY

i

PLAN SYNTHESIS:

tA
Logical Perspective

Stanley J. Rosenschein

Artificial Intelligence Center
SRI, International

333 Ravenswood Avenue
Menlo Park, CA 94025

March, 1981

Contract N00014-80-0-0296

DTIC
ELECTE
DEC 2 11981

JDWU 0mON STATEMENT A

W-4 fat public release;
I Dsttbution Unlimited ,

,/J 0-30,0, /

1q

(
\his paper explores some theoretical issues of robot planning from the

perspective of propositional dynamic logic. A generalized notion of
"progression" and "regression" of conditions through actions is developed.
This leads to a bidirectional single-level planning algorithm which is easily
extended to hierarchical planning. Multiple pre/post-condition pairs, complex
(conjunctive, disjunctive) goals, goals of maintenance and preventioi,,and
plans with tests are all handled in a natural way. The logical raforkjis

used to clarify gaps in existing "nonlinear" and "hierachical" planning

. 7,t, s on For

I 'stribution/

Availability Codes

IAvail and/orSpacial

Table of Contents
1. Introduction 2
2. Preliminaries 3

2.1. Syntax 4
2.2. Semantics 4
2.3. Axiomatics 5
2.4. A Restricted Class of Programs 6

3. A Planning Method 6
3.1. Definitions 7
3.2. Finding Solutions 8

3.2.1. Normal Form for Conditional Plans 8

3.2.2. An Algorithm 9
3.2.3. Progression and Regression 11

3.3. Hierarchical Planning 13
4. Discussion 15

4.1. Modeling Actions: The Legacy of STRIPS Operators 15
4.2. Nonlinear Planning: Problems with Partial Orders and Shuffles 16
4.3. Hierarchical Planning: Problems with Heuristic Decompositions 17
4.4. Some Benefits of Bigression 17

I.

2

1. Introduction

Although the connection between the A.I. planning problem and automated

program synthesis is widely acknowledged, relatively little planning research

has made explicit use of concepts from the logic of programs. Such logics,

however, offer theoretical insight into various issues in A.I. planning,

including compound goals and levels of abstraction. [11, 12, 14, 4] Many of

these issues arise in their purest form in domains describable in the

propositional calculus (e.g. simple blocks worlds) as evidenced by the

literature on the subject. [13, 11, 15] Thus for clarity and continuity, we

choose the propositional setting to develop a unified, abstract treatment of

these issues using propositional dynamic logic (PDL) as our primary logical

tool. (7, 5, 8, 9, 3]

PDL is a decidable modal propositional logic for reasoning about binary

state-relations induced by programs. In theory, the existence of such a logic

provides an immediate "solution" to the propositional planning problem: One

could systematically substitute all possible plans into a schema (the

specification) which asserts the desired property of the plan. The resulting

expressions could be tested for validity to filter out non-solutions.

Unfortunately, this fact is of little practical consequence, as such a

procedure is certain to be grossly inefficient. The approach developed here

imposes additional structure by (1) considering a class of problems that

require, in effect, only non-modal reasoning and (2) using suitable

"progression" and "regression" operators to structure the search for a

solution and allow early pruning of hopeless paths.

Surprisingly, even our restricted formulation covers a more general class

3

of problems than are handled by most comparable A.I. planning methods. For

instance, we allow goals to be arbitrary wffs, so disjunctive goals (cited as

an unsolved problem by Sacerdoti (121) require no special treatment at all.

The approach provides a theoretical basis for hierarchical plan generation

that ties in directly with current ideas on hierarchical program development

(see section 3.3). In addition, the use of program logic provides a formal

basis for specifying and verifying the plan-generating system itself.

Although our work can be generalized along several dimensions

(propositional axiom schemata, plans with loops, quantified

pre/post-conditions, etc.), these are beyond the scope of the current paper,

which focuses instead on the essential structure of the approach. At the same

time, it should be noted that the use of axiom schemata seems to be a minimal

requirement for a practical application. This paper should be regarded as a

foundational study aimed at deepening our understanding of planning; a

separate paper will describe implementation considerations. [10]

2. Preliminaries

This section briefly presents the basic concepts of a loop-free fragment

of propositional dynamic logic (PDL). The interested reader is referred to

(7, 5, 3] for a more thorough treatment of dynamic logic in its entirety.

Though dynamic logic is ordinarily used to reason about programs, it is

equally appropriate for reasoning about plans (in the A.I. sense); thus in

this paper the terms roram and plan are used interchangeably.

T

4

2.1. Syntax

Let P and CL. denote two symbol sets: atomic propositions and atomic

actions, respectively. Define wffs a 0, and programs Ap,& simualtaneously

(deleting subscripts for convenience):

2. OQS A

3. If p~q 6P then -op, p Vq I P
4. If p 4P and % a A then Ca>p 0-P

5. AIA

6. If pt P and p is nonmodal (see below) then p?EiA

7. If 6 A then at;A , .' CU-A

A f ormula is nonmodal if it contains no subf ormula of the f orm 0'.>p. We

abbreviate ',(,p V'vq) as p Aq, -#p Vq as p zq, (p'=,q) A(q _,p) as p 2-q, - <,*>-%p as

[i.]p, pV'.tp as true, and pAnp as false. Parentheses are used when necessary

according to the usual conventions.

2.2. Semantics

A structure S is a triple (W,W~m) where W is a non-empty set of "worlds,"

W1: ~ 2W, and a:L-2 W. That is, W assigns to each atomic proposition p

the subset of W where p holds, and m assigns to each atomic action a the

binary relation over W representing the next-state relation f or a. Given a

structure S, meanings can be assigned to arbitrary programs and formulae by

extending m and F:

14eanings of Program

1. MWA - {(s~s)I 84 W)
(identity relation over W)

2. m(p?) - {(s,s)j sE1T(p))
(identity relation restricted to worlds where p holds)

3. m(%;#) - m(.')* m(p)
(composition of relations)

4. a(s'u#) - is(a)u m(W
(union of relations considered as sets)

5

Meanings of Formulae

1. W(p) -W - (p)
2. w(pVq) - lr(p)Uir(q)

3. W(<U>p) - f sW I3 tW. (s,t) m(ot) and tE r(p) }

The last equation asserts that <a>p is true in those worlds a from which

another world t is reachable via o's next-state relation such that p holds in

t. In general our formulas will involve the dual of <%>, namely (at]. [at]p can

be read "after (, p." The intent is that p holds in all worlds accessible via

Ot.

A formula p is valid in a structure S - (W,W,m) (written S 1 p) if f

1(p) - W; p is valid (written r p) iff it is valid in every structure.

2.3. Axiomtics

The following system captures the semantics given in the previous

section:

Axioms

1. Axioms of the propositional calculus
2. [at I(p q) D (]p [-c]q)

3. [Alp ! p
4. [p?lq i p~q
5. [-A;Alp V [oil (#p

6. [Kcu]p a [,]p % [pp

Rules of Inference

1. From p, p q derive q (Modus Ponens)

2. From p derive [u]p (Necessitation)

If a formula p follows from these axioms under the stated rules of

inference, we say it is Provable and write V-p; if p can be proved from a set

of assumptions, Q, we write Qt- p.

6

2.4. A Restricted Class of Programs

PDL breaks the ordinary conditional statement into more primitive notions

of "test" (?) and "non-deterministic execution" (U). Though we allow the

primitive actions to be non-deterministic, we shall only be interested in

deterministic combining forms. Thus we limit the use of ? and V to contexts

of the form (p?;m) V (up?;A) and require (for convenience only) that p be

atomic. This corresponds to the ordinary conditional, so we abbreviate this

program form to p-4'OI,A and call the class of programs obeying these

syntactic restrictions C-programs (symbolically Ap). The requirement that p

be atomic is not restrictive, since arbitrary boolean combinations of tests

can be expressed by appropriate use of (possibly nested) conditionals. For

example, 'p-.e,p is equivalent to p--w8, .((pP q)--wc,A is equivalent

to (p-.(q-.aijS),,$), etc.

An important property of our combining forms is that they preserve

termination; if the primitives always terminate, every C-program over those

primitives will always terminate. (Loops are conspicuously absent.) In PDL,

the fact that a program a always terminates is expressed <a>true.

3. A Planning Method

Having described a suitable language and logic, we are now in a position

to discuss planning methods. Section 3.1 contains the formal definition of a

(single-level) "planning problem" and the corresponding notion of a

"solution". This leads directly (section 3.2.2) to a bidirectional

(single-level) planning algorithm based on "progressing" and "regressing"

conditions through actions. Section 3.3 describes how the hierarchical

planning problem can be regarded as a succession of single-level problems in a

7

way that makes the connection between the levels logically precise.

3.1. Definitions

A planning problem is a triple (V,Q,R(u)) where

V - (I,) is the vocabulary of the problem, consisting of the atomic
propositions and the atomic actions.1

Q is a finite set of axioms, which we will refer to as domain
constraints. Q is partitioned into two subsets: static
constraints, which are nonmodal formulae, and dynamic
constraints, which are always of the form p = [a]q, p and q
being arbitrary nonmodal wffs and a an atomic action. We
implicitly assume an axiom of the form <a>true for every
atomic action a; this expresses the fact that the action a
always terminates, though Q may only partially specify in what
state a terminates. We also assume that Q is consistent.

R(u) is a finite set of formulae called the plan constraints. Like
the dynamic domain constraints, each of these is of the form1• p = [u]q for nonmodal p and q. The symbol u is a distinguished
atomic action not contained in a.

A solution to a planning problem (V,Q,R(u)) is an expression 9K in the

programming language AV such that for every r(oa) (obtained by substituting

a for u in R), QI- r(at). I.e., it is provable from the domain constraints Q

that *. satisfies all the plan constraints.2 (Because of the termination

constraints on the atomic actions, at is guaranteed to terminate. So in the

language of program logic, we are talking about "total correctness.")

'For some applications it is desirable to constrain the programming language
to use only a designated subset of the propositions as tests in conditionals.
This requires a straightforward modification of our definition and will not be
pursued here.

2Equivalently in semantic terms: Structures that satisfy the domain
constraints also satisfy the a-instantiated plan constraints.

8

3.2. Finding Solutions

Having defined "solutions," we turn our attention to methods for

discovering them. A natural way of organizing the search for solutions is to

follow the syntactic structure of the programming language.

Recall that a program is either A , an atomic action a, or a composite of

the form og;p or t--a,# where -(and id are programs and t is an atomic

proposition. It will simplify the algorithm to consider only programs in a

normal form, which we now define.

3.2.1. Normal Form for Conditional Plans

A program is in normal form if it consists of a sequence 3 of 0 or more

I' atomic actions followed optionally by a conditional program both branches

of which are in normal form, followed in turn by 0 or more further atomic

actions. More formally, a program is in normal form if it can be written as

Al;-...;An, n 0, with at most one Ai not atomic, in which case Ai is of the

form t-4B 1 , B2 where both Bj are themselves in normal form.4 The null

sequence is identified with A, and we take A; - ;A - .

We have not lost any essential solutions by insisting on this form since

every C-program can be put into normal form by transforming the longest

(length > 1) sequence of steps whose first and last steps are conditionals

3Since "" is associative, we write sequences a;b;...;c without indicating
order of association.

4Warren's method (171 for Introducing conditionals produces plans of an
even more restricted form: the conditional must be the last action in the
sequence. I.e., a plan, once split, may never rejoin. This is not an
essential limitation, but it introduces a somewhat greater degree of
redundancy *han our f Nrm. We note in passing that Warren's view of the
conditional eat as A iction, has much in common with PDL's p? action.L,

9

into a single conditional as follows:
(s -PA,B); ... ;(t - C,D)

-0 (s- A; ... ;(t-*C,D), B;... ;(t- C,V))

and applying this transformation recursively to A, B, and the residual

•...;(t - C,D).

3.2.2. An Algorithm

Suppose we are looking for a normal-form program cc that satisfies one of

the dynamic constraints p = [co]q in R. Consider the following cases

corresponding to the possible forms of *C:

1. ci -A . This is a solution if Q I- p q.

2. a- a;# or c- 1;a for some atomic action a. In the former case,
st is a solution if Q I- p/am D]q , where p/a represents the
strongest provable post-condition of p and a. Analogously, in the
second case, O is a solution if Q I- p z [Pja\q where a\q is the
weakest provable precondition of a and q. We call the former case
"progression" and the latter "regression."

3. c K t- 1 , A 2" In this case, C is a solution if
Q I" pA t D [jJq and Q -- p Mi t D [#2]q.

We see that (I) defines success, (2) suggests forward and backward strategies

for sequential steps, and (3) suggests a forward strategy for conditionals.

In addition, we see that there are several obvious ways to limit the

search. First, if p p/a, the forward search need not consider action a. (A

special case of this arises when p/a - true.) Dually, if a\q 2 q, the

backward search need not consider a. (Here we have a special case when

a\q - false.) These checks eliminate self-loops. We can eliminate cycling in

the search space altogether if we are willing to pay the price of checking

whether Pi= p/a for any pi in the leading chain of preconditions. Likewise

we can check whether a\q Z qj for any qj in the trailing chain of

postconditions. Note also that if p= t or pzm t, the forward conditional

search involving t need not be pursued, p/a can never be false since this

- .,, =__]mE.._ lnn

10

would imply failure of a to terminate, contradicting our assumptions about the

domain constraints Q.

These observations lead immediately to the following non-deterministic

algorithm for computing solutions for the single constraint p D [St]q:

(Multiple constraints will be discussed later.)

B IGRESSION5 ALGORITHM

Assume p, q are not false.

Solve(p,q) - Bigress(p,q,A,A).

Bigress(pre,post,leader,trailer):

IF Q I- pre m post THEN RETURN(leader;trailer).

CHOOSE:

CHOOSE <a, pre/a> from LiveForward(pre):

RETURN(Bigress(pre/a, post, leader;a, trailer))

CHOOSE <a, a\post> from LiveBackward(post):

RETURN(Bigress(pre, a\post, leader, a;trailer))

CHOOSE t from NonTriv(pre):

RETURN(leader; C ; trailer)

where C - (t- Bigress(preAt, post,A,A),

Bigress(preAtt, post,A ,A))

LiveForward(p):
IF 0 A S

where S = { <a, p/a> ac-, Q so p z p/a)
THEN RTURB(S)
ELSE FAIL(.

LiveBackward(q):
IF 0 A S

where S - { <a, a\q> a 0., Q t4- a\q Z q}
THEN RTURN(S)
ELSE FAIL(.

5 "Bigression" stands for "bidirectional progression and regression."

.... " '" "" ' i • I i- I I -I •

~11

NonTriv(p):
IF 0 A. S

vhereS(t t CP, QI&pzt, Q- p =ot}
THEN lETURN (S)
ELSE FAIL ().

The algorithm as presented finds solutions for a single plan constraint.

However the extension to the general case is straightforward: To insure that

all the plan constraints are met, a "Cartesian product" version of this

algorithm must be run. A failure in any of the constraint components counts

as failure and serves to prune that branch.

The bigression algorithm makes use of three additional auxiliary

functions: "QI-", "/", and "\". "Qr-" is a procedure which takes as input a

nonmodal formulae p and decides whether p is provable from Q. If the static

axioms, Qs, are rich enough, 6 this check can be done using only nonmodal

reasoning, i.e., ordinary propositional decision methods. The functions ""

(progression) and "\" (regression) are the subject of the next section.

3.2.3. Progression and Regression

Ideally, we would like p/a to compute the strongest postcondition of

condition p and action a. Similarly, we would like a\q to compute the weakest

precondition. [1, 15] In PDL, the weakest precondition of p and a can be

expressed simply as (alp, which is obviously the weakest formula implying

"after a, p"I The strongest postcondition can be expressed using a "converse"

operator which we have not described. (See (51.)

6Specifically, Qs must generate all the nonmodal formulae generated by all
of Q. In certain pathological cases, such as when Q contains a dynamic axiom
of the form p b [a] false, Q would have to be extended to include extra static
axioms, since pm (a]false and <a>true together imply qp--a nonmodal formula
derivable only through modal reasoning.

12

However, given the restricted form of our dynamic axioms, there will be

no propositional formula provably equivalent to either of these modal

formulae. On the other hand, we can effectively compute the weakest

precondition pre and strongest postcondition Dost for which it is provable

from Q that pre implies "after a, q" and p implies "after a, post." It is

these propositional formulae that we label p/a and a\q.

The formula p/a is found by taking the conjunction of the set of formulae

each of which is a disjunction of a set of qi drawn from the "right hand side"

of the dynamic axioms of Q (Pj = [a]qi) such that the disjunction of the

corresponding pi's is implied by p. Dually, a\q is found by taking taking the

I disjunction of the set of formulae each of which is a conjunction of a set of

Pi drawn from the "left hand side" of the dynamic axioms of Q (pi = [a]qi)

such that that conjunction of the corresponding qi1 s implies q.

Consider the following sample axioms:
A ' [a] (B VC)
G ZOa] lB
(F A E) D[a] D

In this case, a\(CVD) - (AAG) V (FAE). The reason for this is that (BV C)

conjoined with tB implies (CVD), so the conjunction of the corresponding

left-hand sides (A A G) is one disjunct of a\(C V D). Likewise, the formula D

alone implies (CVD), making thecorresponding left-hand side (FA E) the

second disjunct. These two cases exhaust the possibilities for getting

(C V D).

The reason why the formulas p/a and a\q defined in this way are not

exactly equivalent to strongest postcondition and weakest precondition lies in

the nature of our atomic actions. Briefly, in the context of programming

L1

13

languages one typically begins with primitives whose semantics are fully

characterized and focuses on characterizing the derived operations

(sequencing, etc.) [1] For example, the weakest precondition for the

assignment primitive is given by
wp("x:- E", P(x)) - P(E).

This equation asserts that the weakest precondition for condition P and action

"x gets E" is precisely P with E substituted for x.

In our case, however, the primitive actions are specified only by axioms

giving one-way implications. Thus, unless we make assumptions of a

"non-monotonic" nature, we would generally be able to consistently add axioms

that "weaken" the precondition or "strengthen" the postcondition of an action.

Since "provably weakest" is unattainable, we make do with "weakest provable."

This does not affect the completeness of the search algorithm, since we are

only looking for programs which provably satisfy the specifications.

3.3. Hierarchical Planning

The key observation in extending the single-level algorithm to

multi-level, hierarchical planning is that an atomic action at level k is a

plan to be solved for at level k+1. This point of view is possible because of

the way the planning problem was formalized. Specifically, an atomic action

is described by a set of dynamic axiom in Q. Likewise, the desired program is

described by a set of dynamic axiom in R. Since the same formal objects,

namely sets of dynamic axiom, are involved in both cases, it is natural to

assume as primitive some action with given properties at level k and then

solve for a program having those properties at level k+1.

Formally, a hierarchical planning problem is a tree of single-level

problems. If <Vk.<*k,4k>,Qk,Rk(uk)> is the problem at non-leaf node k, then

14

node k has one successor for each ak,i in 4k, and that successor's problem has

the form <Vk+1,Qk+1,Q (ak,i)> where Q' denotes the subset of dynamic axioms of

Qk having the form p z [ak,iq. In other words, the domain constraints on the

primitive "a" at level k become plan requirements at level k+1. A solution is

a plan using the vocabulary of the leaf nodes that satisfies the requirements

of the root node. I.e., oc is a solution if it solves <Vn,Qn,Rl(ul)>. The

propositional vocabulary and action vocabulary can change from level to level,

provided the domain axioms have enough inferential structure to make the

transfer from level to level meaningful.

Obviously, for any node k, only the successor nodes corresponding to

actions actually used in the solution need be solved. Furthermore, the

existence of a solution for each of these nodes guarantees the existence of an

overall solution.

As with other hierarchic planners, the main benefit of levels in our

approach is heuristic: The choice of intermediate vocabularies and domain

axioms constitutes a choice of "planning islands." Any algorithm that tries

to solve a problem by solving the nodes in the hierearchy is, in essence,

searching for a plan constrained to go through the states defined by the

intermediate actions' domain constraints. The main benefit of logic here is

to define a reasonable relation between the levels, namely the relation:

"correctly implements."

For a fixed determination of levels and a small number of actions it

would be possible to precompute solutions to the subproblem, in which case

after solving the problem at the top level, the system would act more like a

compiler than a problem solver. In dynamic situations when the lower-level

1_

15

actions (in effect, the "tools" for solving the problem) are changing or when

only a small number of actions are ever actually used, it seems more natural

to solve subproblems as they arise.

4. Discussion

4.1. Modeling Actions: The Legacy of STRIPS Operators

Much of the research into the control of planning has been carried out in

the STRIPS paradigm. [2, 6] In this approach, actions are regarded not as

mappings from states to states, but rather as syntactic transformations of

state-descriptions to state-descriptions, where state-descriptions are logical

formulae. One consequence is the oft-cited benefit of not needing to mention

the various "frame conditions," i.e. the properties which are invariant under

an action. 7 Unfortunately, the need for operators to be sensitive to the

syntax of state descriptions led researchers to consider only very simple

state descriptions (e.g. sets of atomic propositions) and very simple

transformations (e.g. add-lists and delete-lists).

As an example of an action that is difficult to specify with a single

add-list/delete-list pair, consider the action toggle described by a pair of

dynamic axioms:
On(light) z [toggle(switch)] *On(light)

-iOn(light) - [toggle(switch) I On(light)

Since the post-condition depends conditionally on the pre-condition, it cannot

be determined isolation whether toggle adds or deletes the wff On(light). The

same would hold true for actions with disjunctive post-conditions.

These possibilities notwithstanding, many planning systems do make the

7However, these invariants need not be as large an obstacle to practical
implementation as is commonly supposed (see (101).

16

assumption that the truth of a given atomic proposition in the state resulting

from applying a sequence of operators is a determinate, calculable thing.

Techniques which rely crucially on these assumptions are sometimes difficult

to adapt to less constraining assumptions. We give two illustrations from

NOAH. (11]

4.2. Nonlinear Planning: Problems with Partial Orders and Shuffles

The basic idea behind nonlinear planning is the following: To solve a

conjunctive goal GI & G2, find a sequence SI - a;b;...;c which achieves GI and

another sequence S2 - d;e;...;f which achieves G2. Represent the overall plan

as a network of partially ordered actions with SI and S2 as parallel branches.

Now use the "resolve conflicts critic" to detect interference between the

plans and impose additional ordering constraints among the actions to rule out

the interference. The network encodes the subset of possible shuffles of SI

with S2 which are believed to achieve the overall goal G1 & G2.

For the resolve conflicts critic to filter interference correctly, it

must know what is true at each node of the network. Unfortunately, for nodes

that occur after joins, what is true depends crucially on the ultimate

linearization of the parallel branches. In the general case, the best that

can be done is to represent the disjunction of the strongest postconditions of

the alternative linearizations. 8 This requires considering the alternatives,

of which there are tfln) where m and n represent the lengths of the action

sequences in the two parallel branches. Since it is easy to imagine cases

where resolve-conflicts criticism would be an expensive operation, the belief

8Actually, NOAH does not represent disjunctive postconditions-- which may
explain why disjunctive goals are considered problematical.

17

that using a nonlinear strategy is computationally efficient seems to be

grounded in the empirical hypothesis that operators encountered in practice

will permit easy detection of conflicts.

4.3. Hierarchical Planning: Problems with Heuristic Decompositions

The justification for partial orderings in NOAH is tied up with a desire

not to prematurely commit the system to a particular linear order of actions

which, though seemingly correct at one level, may expand into incorrect plans

at lower levels. This possibility can only arise, of course, if the relation

between levels ("plan A achieves the same effect as action a") is not exact.

However, such inexactness undermines the original rationale for hierarchic

planning, namely factorization of complexity, since it destroys

compositionality and requires that we check complex lower-level plans for

"unexpected" global interactions. Again, an empirical hypothesis is

presumably invoked, namely that by some suitable metric, the plan comes

"close" to implementing the abstract action. (It is not immediately obvious,

though, what metric could be meaningful for the space in question.)

4.4. Some Benefits of Bigression

Some of the benefits of regression were first discussed by Waldinger

(151 and appreciated by Warren. 1161 These benefits are reaped dually by

including progression, which completes the logical symmetry and allows

bidirectional search. As we have described them, the progression and

regression operations handle arbitrary boolean formulas, thus solving

conjunctive and disjunctive goals as special cases of a more general strategy.

Goals of maintenance and prevention can be incorporated into the algorithm as

wall by expressing as (nonmodal) wffs the condition to be maintained (a) and

the condition to be prevented (v). Since the planning algorithm actually

18

develops a descriptive wff (d) for each state reachable during plan execution,

it is straightforward to add a check to the procedures LiveForward,

LiveBackward, and NonTriv eliminating paths through states where

Q t d D -, a V v .9 This simple approach will work in situations where no

dynamic replanning is anticipated; goals of maintenance and prevention

involving execution monitoring, feedback and replanning, require more complex

strategies.

ACIOWEDGEKEIITS

I have profited from discussions with Richard Waldinger, Vaughan Pratt,

Kurt Konolige, Dave Wilkins, Jerry Hobbs, and Bob Moore.I.

9 For a more thoroughgoing treatment of reasoning about processes with
intermediate states, see [9]

xix

REFER NCES

1. Dijkstra, Edsger W. Guarded Commands, Nondeterminacy and Formal
Derivation of Programs. Communications of the ACM 18, 8 (August 1975),
453-457.
2. Fikes, R.E. and N.J. Nilsson. STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving. Artificial Intelligence 2, 3-4 (Winter
1971), 189-208.
3. Harel, David. Lecture Notes in Computer Science. Volume 68: First Order
Dynamic Logic. Springer-Verlag, 1979.
4. Hayes-Roth, B. and F. Hayes-Roth, S. Rosenschein, and S. Cammarata.
Modeling Planning as an Incremental, Opportunistic Process. Proceedings of
6th International Joint Confereace on Artificial Intelligence, Tokyo,
August, 1979, pp. 375-383.
5. Litvintchouk, S.D. and V.R. Pratt. A Proof-Checker for Dynamic Logic.
Proceedings of 5th Internaotonal Joizt Conference on Artificial Intelligence,
Massachusetts Institute ot Technology, August, 1977, pp. 552-558.
6. Nilsson, Nile J. Pr tw of Artificial Intelligence. Tioga Publishing
Co., 1980.
7. Prntt, Vaughan R. Semantica], Considerations on Floyd-Hoare Logic.
Proceedings of the 17th INZE Symposium on Foundations of Computer Science,
October, 1976, pp. IC9-121,
8. Pratt, Vaughan R. A Near-Optimal Method for Reasoning about Action.
MIT/LCS/TM-113, Massachusetts Institute of Technology, September, 1978.
9. Pratt, Vaughan R. Six Lectures on Dynamic Logic. MIT/LCS/TM-117,
Massachusetts Institute of Technology, December, 1978.
10. Rosenschein, Stanley J. Hierarchical Planning: Implementation
Considerations. SRI Technical Report. Forthcoming.
11. Sacerdoti, Earl D. The Nonlinear Nature of Plans. Proceedings of 4th
International Joint Conference on Artificial Intelligence, Tbilisi, Georgia,
USSR, September, 1975, pp. 206-214.
12. Sacerdoti, Earl D. A Structure for Plans and Behavior. Elsevier, 1977.
13. Sussman, G.J. A Computer Model of Skill Acquisition. American Elsevier,
New York, 1975.
14. Tate, Austin. Generating Project Networks. Proceedings of 5th
International Joint Conference on Artificial Intelligence, Massachusetts
Institute of Technology, August, 1977, pp. 888-893.
15. Waldinger, Richard. Achieving Several Goals Simultaneously. Technical
Note 107, SRI International, July, 1975.
16. Warren, David H.D. WARPLAN: A System for Generating Plans. Department
of Computational Logic Memo 76, University of Edinburgh, July, 1974.
17. Warren, David H.D. Generating Conditional Plans and Programs.
Proceedings of Summer Conference on Artificial Intelligence and Simulation of
Behavior, University of Edinburgh, July, 1976, pp. 344-354.

r!

